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Abstract
Using the nonlinear perturbation method, we study a crossover between
quantum and classical regimes for the escape rate. We present a general formula
for determining whether the escape rate changes smoothly around the crossover
temperature or not. Applying it to tetragonal and hexagonal symmetries, it is
found that the crossover is mostly of first order.

1. Introduction

In recent years, nanospin systems have aroused considerable interest since the discovery that
they provide instances which exhibit different types of crossover between thermal activation
over the energy barrier and quantum tunnelling under the barrier [1–7]. One good subject is a
single-domain ferromagnetic particle with the magnetization M whose direction is changed
by the magnetic anisotropy energy depending on the crystal symmetry. At sufficiently high
temperature the direction of M is changed by a classical process, in which the changing rate
of M , i.e., the so-called escape rate �, obeys the Arrhenius law, � ∼ exp(−U/kBT ), with
U being the height of the energy barrier. At a temperature low enough for ignoring thermal
fluctuation, M is changed by quantum tunnelling whose rate is � ∼ exp(−U/h̄ω), where ω
is the oscillation frequency in the well. Hence, there exists a temperature T0 (∼h̄ω/kB) at
which crossover between two regimes occurs. Up to now, two possible types of quantum–
classical crossover, first- and second-order crossovers, have been suggested. At the first-order
crossover the system crosses the energy barrier, changing abruptly with temperature, which
leads to a steep change of the escape rate around T0. However, at the second-order crossover
the energy of the system changes smoothly with temperature, and the crossover occurs over a
broad interval of temperature. Whether the crossover is a first- or second-order one in nanospin
systems is mainly determined by the anisotropy energy and the external magnetic field.

The criterion of first- or second-order crossover for the escape rate was proposed by
Chudnovsky, who showed that the escape rate changes in a broad or narrow interval of
temperature around T0 depending on the oscillation period τ(E) of the instanton [1] where
E is the energy of the instanton. Many theoretical studies have been performed on nanospin
systems that are uniaxial or biaxial systems, by employing a mapping of the spin problem
onto a particle one and periodic instantons [2–4]. However, such methods cannot be applied
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to symmetries other than uniaxial or biaxial symmetry, because there are no one-dimensional
functional forms of the actions in such cases. Recently, the present author has developed
a theoretical method [8] for dealing with the crossover in cubic or ferrimagnetic nanospin
systems by using nonlinear perturbation near the top of the barrier [9]. In this situation it
would be interesting to know whether there is a general approach for treating the phenomena
in major crystal symmetries. In this paper I will show that it is possible to establish such a
general method in the situation where the easy plane is constant, e.g., φ = 0. Also, choosing
specific examples such as tetragonal and hexagonal symmetries, we will present complete
analytic results on the phase boundary between first- and second-order crossovers.

2. Formulation of the problem

In this section we briefly discuss the basic formalism used to study the quantum–classical
crossover of the escape rate in a ferromagnetic particle based on the spin-coherent-state path
integral. In this case the Euclidean action in terms of the imaginary time (τ = it) becomes

SE(θ, φ) = V

∫
dτ

[
i
m

γ
(1 − cos θ)

dφ

dτ
+ E(θ, φ)

]
(1)

where V is a volume of the particle, m the magnetization, γ the gyromagnetic ratio, and
θ , φ spherical coordinates of the magnetization. Also, E(θ, φ) is the total energy which is
composed of the anisotropy energy and the energy given by an external magnetic field. The
classical trajectory of θ and φ is determined by

inφ̇ sin θ = −Eθ inθ̇ sin θ = Eφ (2)

where n = m/γ , φ̇ = dφ/dτ , θ̇ = dθ/dτ , Eθ = ∂E/∂θ , and Eφ = ∂E/∂φ. Employing the
perturbation method for the criterion of first- or second-order crossover, the classical trajectory
of θ (φ) is decomposed into the position of the barrier θ̄ (φ̄) and a fluctuation term δθ (δφ),
i.e., θ = θ̄ + δθ (φ = φ̄ + δφ) for the behaviour of the weakly time-dependent solutions. The
solutions of the equation of motion are parametrized by the amplitude a of the oscillations,
which quantifies the difference between the thermal and the time-dependent solutions near
the top of the barrier. Our goal is to solve equation (2) for δθ(τ ) and δφ(τ) and find the
correction to the oscillation period away from the thermal saddle point. Using the notation
δΩ(τ ) ≡ (δθ(τ ), δφ(τ)), we have δΩ(τ + βh̄) = δΩ(τ ) at finite temperature and we write
it as Fourier series δΩ(τ ) = ∑∞

j=−∞ δΩj exp(iω̃j τ ) where ω̃j = 2πj/βh̄ and β = 1/kBT .
Proceeding with the perturbation of δΩ, we will obtain the correction δω (≡ω−ω0) at higher
order where ω0 is a small oscillation frequency in the lowest order near the top of the barrier.
According to Chudnovsky’s criterion, we have δω > 0 for the first-order crossover and δω < 0
for the second-order one. Thus, we will discuss whether the corrected period 2π/ω is less than
the period 2π/ω0 or not.

Now, let us apply our considerations to the anisotropy energy with a constant easy plane,
e.g., φ = 0. Writing θ̄ = θ0, equation (2) is expressed in terms of δθ and δφ, which results in

in(δφ̇) + A1(δθ) + A2(δθ)
2 + A3(δφ)

2 + A4(δθ)
3 + A5(δθ)(δφ)

2 = 0 (3)

in(δθ̇) + B1(δφ) + B2(δθ)(δφ) + B3(δφ)
3 + B4(δθ)

2(δφ) = 0 (4)

where δφ̇ = d(δφ)/dτ , δθ̇ = d(δθ)/dτ , and

A1 = Eθθ cosec θ0

A2 = 1
2Eθθθ cosec θ0 − Eθθ cot θ0 cosec θ0

A3 = 1
2Eφφθ cosec θ0

(5)
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A4 = 1
6Eθθθθ cosec θ0 − 1

2Eθθθ cot θ0 cosec θ0 + Eθθ (
1
2 + cot2 θ0) cosec θ0 (6)

A5 = 1
2Eθθφφ cosec θ0 − 1

2Eφφθ cot θ0 cosec θ0 (7)

B1 = −Eφφ cosec θ0

B2 = −Eθφφ cosec θ0 + Eφφ cot θ0 cosec θ0

B3 = − 1
6Eφφφφ cosec θ0

(8)

B4 = − 1
2Eθθφφ cosec θ0 + Eθφφ cot θ0 cosec θ0 − Eφφ(

1
2 + cot2 θ0) cosec θ0.(9)

Further, we introduce Eθθ = [∂2E/∂θ2]θ=θ0,φ=0, Eφφθ = [∂3E/∂φ2∂θ ]θ=θ0,φ=0, and so on.
Considering the system in which δθ is real and δφ imaginary, we can write δθ � aθ1 cos(ωτ)
and δφ � iaφ1 sin(ωτ) to lowest order in perturbation theory. Substituting them into
equations (3) and (4) while neglecting terms of order higher than a, we obtain

φ1

θ1
= A1

nω0
= nω0

B1
(10)

where it is noted that ω0 = √
A1B1/n.

In order to find the change of the oscillation frequency, we need to investigate equations (3)
and (4) by choosing δθ � aθ1 cos(ωτ) + δθ2, and δφ � iaφ1 sin(ωτ) + iδφ2, where δθ2 and
δφ2 are of the order of a2. Neglecting terms of order higher than a2, we find ω = ω0, and the
corresponding perturbations δθ2 = a2θ2

1 [t1 + t2 cos(2ωτ)] and δφ2 = a2θ2
1 [f1 + f2 sin(2ωτ)]

with

t1 = A1A3 − A2B1

2A1B1
(11)

t2 = 2A1B2 + A2B1 + A1A3

6A1B1
(12)

f1 = 0 (13)

f2 = A1B2 + 2A2B1 + 2A1A3

6nω0B1
. (14)

Since the oscillation frequency does not change in this order, the higher order should be taken
into account by writing δθ � aθ1 cos(ωτ) + δθ2 + δθ3 and δφ � iaφ1 sin(ωτ) + iδφ2 + iδφ3,
where δθ2 and δφ2 are of the order of a3. Inserting them again into equations (3) and (4) and
retaining only terms up to O(a3), we have for the shift of the frequency

ω2 − ω2
0 =

(
aθ1

n

)2

(g1 + g2 + g3) (15)

where

g1 = 2A2B1(t1 + 1
2 t2) − A3(f2nω0) (16)

g2 = 1
2B2(f2nω0) + A1B2(t1 − 1

2 t2) (17)

g3 = 1

4

(
3A4B1 − A1A5 + A1B4 − 3

A2
1B3

B1

)
. (18)

Now, we shall apply the formalism to the crossover in the presence of a longitudinal
magnetic field for tetragonal and hexagonal symmetries.

3. Crossover in tetragonal symmetry

Choosing ẑ to be the initial easy axis for the anisotropy constant K1 > 0, the energy is
expressed as

E(θ, φ) = K1 sin2 θ + [K2 − K ′
2 cos(4φ)] sin4 θ (19)
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where K1 � K2,K
′
2 > 0. Introducing the dimensionless parameters k = K2/K1 and

q = K ′
2/K1, the energy on the easy plane φ = 0 is represented as

E(θ, φ = 0) = K1[sin2 θ + (k − q) sin4 θ ]. (20)

Noting that θ0 = π/2 in equation (20), we obtain from equations (5)–(9)

A1 = −2 − 4(k − q) A2 = A3 = 0 A4 = 1 + 14(k − q)

3
(21)

A5 = −32q B1 = −16q B2 = 0 B3 = 128
3 q B4 = 24q. (22)

Substituting them into equations (10)–(15), the shift of the frequency becomes

ω2 − ω2
0 = 8

(
aθ1

n

)2

[4k2 + k(4 − 22q) − 8q + 18q2 + 1]. (23)

Simple analysis shows that ω > ω0 for q < 12/49. In the meantime, since q  1 is the
region that we are interested in, we have ω > ω0, i.e., τ < τ0 where τ and τ0 are the period
of the instanton just below and at the top of the barrier, respectively. Since τ(E) begins to
decrease with decreasing E from the top of the barrier but τ(E0) eventually goes to ∞ where
E0 is the bottom of the metastable well, there should be a minimum at some energy between
the bottom of the metastable well and the top of the barrier. This indicates that the shape of τ
is not monotonic. Accordingly, the first-order crossover always occurs in this situation.

Next, we consider the crossover in the presence of a longitudinal magnetic field. Applying
the magnetic field along the −ẑ-axis, the total energy with H = −Hẑ is represented as

E(θ, φ) = K1[sin2 θ + (k − q cos(4φ)) sin4 θ + 2hz(cos θ − 1)] (24)

where hz = Hz/H0, H0 = 2K1/m, and a constant is introduced to make E(θ, φ = 0) zero at
θ = 0. In this case it is easily seen that θ = 0 is the position of the metastable state for hz < 1.
However, there also exists a metastable state even for hz > 1. In order to study this property,
we expand E(θ, φ = 0) in the limit of hz � 1, which leads to equation (24), approximately
given by

E(θ, φ = 0) � K1

[
(1 − hz)θ

2 +

(
−1

3
+ k − q +

hz

12

)
θ4

]
. (25)

In this case, assuming that k > q + (4 − hz)/12 (>0.33), we get the metastable position

θ � hz − 1√
2[k − q − 1

3 (1 − hz/4)]
(26)

even for hz > 1. However, since k  1 is an interesting region, the problem will be considered
in the range of field hz < 1.

Before calculating the oscillation frequency, we need to find the position of the barrier θ0

which is a function of k, q, and hz. In order to do that, we calculate dE(θ, φ = 0)/dθ from
equation (24) and obtain

hz = −2(k − q) cos3 θ0 + [2(k − q) + 1] cos θ0 (27)

whose behaviour is illustrated in figure 1 for given k and q. Note that θ0 = π/2 for hz = 0
and θ0 = 0 for hz = 1.

Now, we calculate the parameters for the crossover by using equations (5)–(9):

A1 = 2[−1 + k − q + 3(k − q) cos(2θ0)] sin θ0 (28)

A2 = [−1 − 5(k − q) + 9(k − q) cos(2θ0)] cos θ0 (29)

A3 = 32q cos θ0 sin2 θ0 (30)
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Figure 1. hz versus θ0 for k = 0.2 and q = 0.007 525.

A4 = [1 − 13(k − q) − 27(k − q) cos(2θ0)] sin θ0/3 (31)

A5 = −8q[sin θ0 − 3 sin(3θ0)] (32)

B1 = −16q sin3 θ0 (33)

B2 = −48q cos θ0 sin2 θ0 (34)

B3 = (128/3)q sin3 θ0 (35)

B4 = −12q[1 + 3 cos(2θ0)] sin θ0. (36)

Inserting them into equations (10)–(15), the change of frequency is determined by three
quantities:

g1 = −2q cos2 θ0 sin2 θ0[14 + 44(k − q) + 293(k − q)2

− 12(k − q)(13 + 25(k − q)) cos(2θ0)

+ 231(k − q)2 cos(4θ0)]/[1 − k + q − 3(k − q) cos(2θ0)] (37)

g2 = −3q[13 − (k − q)(3 + 49 cos(2θ0))] sin2(2θ0) (38)

g3 = 2[4 − 8k + 22k2 + 14q − 83kq + 61q2 + 2(12k2 − 2k(6 + 19q)

+ q(23 + 26q)) cos(2θ0) + 9(2k2 − 9kq + 7q2) cos(4θ0)] sin2 θ0. (39)

As discussed previously, g1 +g2 +g3 = 0 determines the phase boundary between the first- and
the second-order crossover. Using equation (27), we get the phase boundary which depends
on k, q, and hz. As is shown in figure 2, the first-order crossover is dominant for the typical
value of q which we are interested in, and the second-order one is confined to the range of
field hz � 1 and k � 0.3. As q decreases, the range of the second-order crossover tends to
diminish in the phase diagram. Therefore, in order to observe the second-order crossover in
the tetragonal symmetry, q and hz should be relatively large.
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Figure 2. The phase diagram, hz versus k, obtained from equation (39) for the tetragonal symmetry,
where the range of q is 0.002 573 ∼ 0.01 and the symbol I indicates the first-order regime and II
the second-order one. Note that the actual range of hz is 0 � hz < 1.

4. Crossover in hexagonal symmetry

In this section we study the hexagonal symmetry whose anisotropy energy is given by

E(θ, φ) = K1 sin2 θ + K2 sin4 θ + [K3 − K ′
3 cos(6φ)] sin6 θ (40)

where the easy axis is chosen to be ẑ, and K1 � K2,K3,K
′
3 > 0. Defining k2 = K2/K1,

k3 = K3/K1, and q = K ′
3/K1, the energy at φ = 0 can be written as

E(θ, φ = 0) = K1[sin2 θ + k2 sin4 θ + (k3 − q) sin6 θ ]. (41)

In this case, since the position of the barrier is θ0 = π/2, we have

A1 = −2[1 + 2k2 + 3(k3 − q)] A2 = A3 = 0 A4 = 1 + 14k2 + 39(k3 − q)

3
(42)

A5 = −108q B1 = −36q B2 = 0 B3 = 216q B4 = 90q (43)

which leads to the change of the frequency given by

ω2 − ω2
0 = 18

(
aθ1

n

)2

[4k2
2 + 2k2(2 + 6k3 − 15q) + 9k2

3 + k3(6 − 54q) + 1 − 12q + 45q2].

(44)

Noting that k2, k3, and q  1, we always have ω > ω0, and thereby expect that only the
first-order crossover occurs in this situation.

Applying an external field along the −ẑ-axis, Hzm cos θ is added to equation (40). In this
situation equations (5)–(9) are more complicated; the results are

A1 = −2 sin θ0[1 + 2k2 sin2 θ0 + 3(k3 − q) sin4 θ0 − 4 cos2 θ0(k2 + 3(k3 − q) sin2 θ0)] (45)

A2 = cos θ0[−1 − 14k2 sin2 θ0 − 39(k3 − q) sin4 θ0 + 4 cos2 θ0(k2 + 9(k3 − q) sin2 θ0)] (46)
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A3 = 108q cos θ0 sin4 θ0 (47)

A4 = [8 − 104k2 + 69(k3 − q) − 12(18k2 + 11(−k3 + q)) cos(2θ0)

+ 375(k3 − q) cos(4θ0)] sin θ0/24 (48)

A5 = 54q sin3 θ0[3 + 5 cos(2θ0)] (49)

B1 = −36q sin5 θ0 (50)

B2 = −180q cos θ0 sin4 θ0 (51)

B3 = 216q sin5 θ0 (52)

B4 = −45q[3 + 5 cos(2θ0)] sin3 θ0. (53)

As before, we plug them into equations (10)–(15) and obtain the following results which
determine the shift of the oscillation frequency:

g1 = 72q cos θ0 sin5 θ0{[(8 + 40k2 + 81(k3 − q) − 12(6k2 + 13(k3 − q)) cos(2θ0)

+ 75(k3 − q) cos(4θ0))(72 + 8k2 + 113(k3 − q)

+ (−296k2 − 348(k3 − q)) cos(2θ0)

+ 235(k3 − q) cos(4θ0)) cot θ0]/[64(−8 + 8k2 + 3k3 − 3q

+ 12(2k2 + k3 − q) cos(2θ0) − 15(k3 − q) cos(4θ0))]

− 3 cos θ0[−2k2 − k3 + q + 5(k3 − q) cos(2θ0)] sin θ0} (54)

g2 = 45
8 q cos2 θ0 sin4 θ0{−152 + 72k2 − 83(k3 − q) + 4[134k2 + 117(k3 − q)] cos(2θ0)

− 385(k3 − q) cos(4θ0)} (55)

g3 = − 9
8q sin6 θ0[8 − 104k2 + 69(k3 − q) − 12 (18k2 − 11(k3 − q)) cos(2θ0)

+ 375(k3 − q) cos(4θ0)] + 99
2 q sin4 θ0[3 + 5 cos(2θ0)][1 + 2k2 sin2 θ0

+ 3(k3 − q) sin4 θ0 − 4 cos2 θ0(k2 + 3(k3 − q) sin2 θ0)]

+ 18 sin2 θ0[1 + 2k2 sin2 θ0 + 3(k3 − q) sin4 θ0

− 4 cos2 θ0(k2 + 3(k3 − q) sin2 θ0)]
2. (56)

In this situation theoretical analysis becomes more cumbersome because g1, g2, and g3 depend
on three physical quantities k2, k3, and q. If such quantities are experimentally estimated, the
analytic result δω (∝g1 +g2 +g3) from equations (54)–(56) gives the guideline for determining
whether the crossover is first or second order. In fact, the practically interesting situation is
where the height of barrier is small and its width is narrow, which leads to large tunnelling
rate. Such a situation is realized in the range of field H � Hc where Hc is a critical field at
which the barrier disappears. Defining ε ≡ 1 − H/Hc where Hc = 2K1/m, the approximate
form of the total energy is represented as

E(θ, φ) � K1

[
εθ2 − 1

4

(
1 − 4k2 +

ε

3

)
θ4 +

1

24
(1 − 16k2 + 24k3 − 24q cos(6φ))θ6

]
(57)

where ε  1. Noting that the position of barrier is θ0 � √
2ε/(1 − 4k2), we obtain the change

of frequency given by

ω2 − ω2
0 �

(
aθ1

n

)2

36(1 − 4k2)ε. (58)

It is evident that the first-order crossover occurs in the range k2 < 1/4. In general, if the
potential is of the form θ2 − θ4 + θ6 in one dimension, the crossover is always second order.
However, equation (58) givesω > ω0 which leads to first-order crossover. Actually, in the case
where such a potential is not derived from the effective action, it is not certain that equation (57)
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gives rise to second-order crossover. To put this another way, if the action in equation (1) is
reduced to the one with the one-dimensional functional form in which the effective potential
is of the form θ2 − θ4 + θ6, the crossover is expected to be second order. However, it is
not possible to obtain such an effective action and the corresponding potential in this system.
Hence, even though the potential looks like θ2 − θ4 + θ6 in the limit of small ε, the system
displays first-order crossover.

5. Conclusions

We have studied quantum–classical crossover in nanomagnetic systems with a longitudinal
field. We have presented a general formula for determining whether the system exhibits first-
or second-order crossover, and applied it to specific examples such as tetragonal and hexagonal
symmetries. The result is of interest theoretically and experimentally in two respects. First,
in uniaxial or biaxial symmetry, which have been much studied in the literature, the first-order
regime decreases greatly with increasing field. Thus, in order to observe the sharp change of the
escape rate around the crossover temperature in uniaxial or biaxial symmetry, the magnitude
of an external field should be small and thereby the number of total spins should be moderate.
However, in tetragonal or hexagonal symmetry the first-order crossover is expected to occur
even in the range of large magnetic field. Hence, a system with a large spin can also be
a good candidate for showing first-order crossover. Second, qualitative analysis shows that
(T/T0 � 1/S in the first-order crossover and 1/

√
S in the second-order one. For, e.g.,

S ∼ 100 we can obtain (T/T0 ∼ 0.10 for the former and 0.1 for the latter. From this
viewpoint, the larger the spin, the more likely one is to see a dramatic change of the escape
rate in real experiments.
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